Feature Selection via Maximizing Fuzzy Dependency

نویسندگان

  • Qinghua Hu
  • Pengfei Zhu
  • Jinfu Liu
  • Yongbin Yang
  • Daren Yu
چکیده

Feature selection is an important preprocessing step in pattern analysis and machine learning. The key issue in feature selection is to evaluate quality of candidate features. In this work, we introduce a weighted distance learning algorithm for feature selection via maximizing fuzzy dependency. We maximize fuzzy dependency between features and decision by distance learning and then evaluate the quality of features with the learned weight vector. The features deriving great weights are considered to be useful for classification learning. We test the proposed technique with some classical methods and the experimental results show the proposed algorithm is effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

On fuzzy-rough attribute selection: Criteria of Max-Dependency, Max-Relevance, Min-Redundancy, and Max-Significance

Attribute selection is one of the important problems encountered in pattern recognition, machine learning, data mining, and bioinformatics. It refers to the problem of selecting those input attributes or features that are most effective to predict the sample categories. In this regard, rough set theory has been shown to be successful for selecting relevant and nonredundant attributes from a giv...

متن کامل

Comparing Fuzzy-Rough and Fuzzy Entropy-assisted Fuzzy-Rough Feature Selection

Feature Selection (FS) methods based on fuzzy-rough set theory (FRFS) have employed the dependency function to guide the FS process with much success. More recently a method has been developed which uses fuzzy-entropy [9] to perform this task. Such use of fuzzy-entropy as an evaluation measure in fuzzy-rough feature selection can result in smaller subset sizes than those obtained through FRFS a...

متن کامل

Usage of class dependency based feature selection and fuzzy weighted pre-processing methods on classification of macular disease

In this paper, we propose a new feature selection method called class dependency based feature selection for dimensionality reduction of the macular disease dataset from pattern electroretinography (PERG) signals. In order to diagnosis of macular disease, we have used class dependency based feature selection as feature selection process, fuzzy weighted pre-processing as weighted process and dec...

متن کامل

A stochastic model for project selection and scheduling problem

Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2010